
Human Shaped Microservices
A people centric approach to modelling systems

Damian Maclennan - damianm.com

HI! I’m Damian
“Consultant CTO”

Long time consultant

CTO for a few software and hardware startups

Now Freelance

I teach software architecture at Stack Mechanics

I live in Brisbane

I have a lot of hobbies

Can find me as @damianm in most places.

Agenda
Some background

A brief history of microservices

Where people go wrong

Modelling concepts

Domain Driven Design - The other DDD

Human Shaped Microservices

A side rant into cargo cult agile and why words have meaning

Wrap it up with a couple of things you can take away

Background

Photo by Shannon Kunkle on Unsplash

https://unsplash.com/@photoskunk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-small-toy-dog-sitting-next-to-a-fire-wcjTsdtDw1Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

A brief history of Microservices

Service Oriented Architecture

Photo by Shannon Kunkle on Unsplash

https://unsplash.com/@photoskunk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-small-toy-dog-sitting-next-to-a-fire-wcjTsdtDw1Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Enterprise Service Bus - ESB

Photo by Shannon Kunkle on Unsplash

https://unsplash.com/@photoskunk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-small-toy-dog-sitting-next-to-a-fire-wcjTsdtDw1Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

REST Based Microservices

Photo by Shannon Kunkle on Unsplash

https://unsplash.com/@photoskunk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-small-toy-dog-sitting-next-to-a-fire-wcjTsdtDw1Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

“Where do we keep going wrong?”

–Jonathan Swift

“Everything old is new again”

–George Santayana

“Those who do not remember the past are condemned to repeat it”

Modelling

The Entity Service Anti Pattern

AKA - We are really good at modelling
data, but bad at modelling behaviour.

Failure Mode #1
A calling service has to make
multiple calls to multiple
services to collect all the data it
needs.

Then decide how to join it.

Your responsibilities have just
leaked all over the place!

Failure Mode #2
The service has to orchestrate calls
to other services.

This causes a synchronous chain of
locks and all the latency and fault
tolerance issues that we see.

Other Smells
Overuse of Polly or other retry
libraries

Services trying to manage
referential integrity or Entity
Relationships over HTTP

Overuse of service meshes

Service locators in code

This breaks so many of the rules we know about modelling.

We’re tightly coupled, but in a way that introduces latency and failure.

None of the services have any autonomy or own any business process.

Domain Driven Design

Bounded Contexts

Story Time - A bad restaurant

Story Time - A good restaurant

Some Lessons

Chains of requests where you have to wait for an answer doesn’t work so
well

Letting people know what you want, and having them let youknow when
something is done, or has changed works a whole lot better

People with the information to do their job are more effective

Different teams need different information in different formats

–Me

“Software which follows these principles will work better.”

Human Shaped Microservices

Human Shaped Microservices

Async over synchronous where possible

Sending commands

Publishing or receiving events

Services “knowing” the right amount to fullfill a role or process

Modelling Principles

If you were building this as a company, with people, what are the teams?

What are the different roles?

How do they communicate with each other?

What roles can you put multiple people in to scale their work? How does
work get assigned?

Some building blocks

Commands
A one way message that says do
this thing.

Events
Events can be published, and
they can be subscribed to
(pubsub)

A message that announces this
just happened.

Any service that cares about this
information can listen for these
messages and get a copy.

Bounded Contexts
This is the size and shape of your service.

What does the “team” look like to own this business process or problem
space. When would you split a team up into sub teams

Loose coupling and domain design
Pick your hammer wisely

Events and commands are about
behaviour, and behaviour is how
we model rich domains.

Thinking in terms of events and
commands will give you a better
model, and a more fault tolerant
architecture.

Side Rant
SOA was never just about SOAP

Microservices were never about putting HTTP on every
database table

DDD isn’t just the Repository Pattern

Devops isn’t just about hiring a team to be build engineers

Agile isn’t just about user stories and “Kanban” boards

Words have meanings, and when we lose sight of this we
all suffer

Some Conclusions

Learn from history

Understand what problem you’re really solving

Modelling is critical

Look at the people, the behaviours, and the processes in your modelling

Talk to people!

Thank you!

